9 research outputs found

    Imparting 3D representations to artificial intelligence for a full assessment of pressure injuries.

    Get PDF
    During recent decades, researches have shown great interest to machine learning techniques in order to extract meaningful information from the large amount of data being collected each day. Especially in the medical field, images play a significant role in the detection of several health issues. Hence, medical image analysis remarkably participates in the diagnosis process and it is considered a suitable environment to interact with the technology of intelligent systems. Deep Learning (DL) has recently captured the interest of researchers as it has proven to be efficient in detecting underlying features in the data and outperformed the classical machine learning methods. The main objective of this dissertation is to prove the efficiency of Deep Learning techniques in tackling one of the important health issues we are facing in our society, through medical imaging. Pressure injuries are a dermatology related health issue associated with increased morbidity and health care costs. Managing pressure injuries appropriately is increasingly important for all the professionals in wound care. Using 2D photographs and 3D meshes of these wounds, collected from collaborating hospitals, our mission is to create intelligent systems for a full non-intrusive assessment of these wounds. Five main tasks have been achieved in this study: a literature review of wound imaging methods using machine learning techniques, the classification and segmentation of the tissue types inside the pressure injury, the segmentation of these wounds and the design of an end-to-end system which measures all the necessary quantitative information from 3D meshes for an efficient assessment of PIs, and the integration of the assessment imaging techniques in a web-based application

    A Proposed Methodology for Subjective Evaluation of Video and Text Summarization

    Get PDF
    International audienceTo evaluate a system that automatically summarizes video files (image and audio), it should be taken into account how the system works and which are the part of the process that should be evaluated, as two main topics to be evaluated can be differentiated: the video summary and the text summary. So, in the present article it is presented a complete way in order to evaluate this type of systems efficiently. With this objective, the authors have performed two types of evaluation: objective and subjective (the main focus of this paper). The objective evaluation is mainly done automatically, using established and proven metrics or frameworks, but it may need in some way the participation of humans, while the subjective evaluation is based directly on the opinion of people, who evaluate the system by answering a set of questions, which are then processed in order to obtain the targeted conclusions. The obtained general results from both evaluation systems will provide valuable information about the completeness and coherence, as well as the correctness of the generated summarizations from different points of view, as the lexical, semantical, etc. perspective. Apart from providing information about the state of the art, it will be presented an experimental proposal too, including the parameters of the experiment and the evaluation methods to be applied

    Integrating 3D Model Representation for an Accurate Non-Invasive Assessment of Pressure Injuries with Deep Learning

    No full text
    Pressure injuries represent a major concern in many nations. These wounds result from prolonged pressure on the skin, which mainly occur among elderly and disabled patients. If retrieving quantitative information using invasive methods is the most used method, it causes significant pain and discomfort to the patients and may also increase the risk of infections. Hence, developing non-intrusive methods for the assessment of pressure injuries would represent a highly useful tool for caregivers and a relief for patients. Traditional methods rely on findings retrieved solely from 2D images. Thus, bypassing the 3D information deriving from the deep and irregular shape of this type of wounds leads to biased measurements. In this paper, we propose an end-to-end system which uses a single 2D image and a 3D mesh of the pressure injury, acquired using the Structure Sensor, and outputs all the necessary findings such as: external segmentation of the wound as well as its real-world measurements (depth, area, volume, major axis and minor axis). More specifically, a first block composed of a Mask RCNN model uses the 2D image to output the segmentation of the external boundaries of the wound. Then, a second block matches the 2D and 3D views to segment the wound in the 3D mesh using the segmentation output and generates the aforementioned real-world measurements. Experimental results showed that the proposed framework can not only output refined segmentation with 87% precision, but also retrieves reliable measurements, which can be used for medical assessment and healing evaluation of pressure injuries

    Breast Cancer Histopathology Image Classification Using an Ensemble of Deep Learning Models

    No full text
    Breast cancer is one of the major public health issues and is considered a leading cause of cancer-related deaths among women worldwide. Its early diagnosis can effectively help in increasing the chances of survival rate. To this end, biopsy is usually followed as a gold standard approach in which tissues are collected for microscopic analysis. However, the histopathological analysis of breast cancer is non-trivial, labor-intensive, and may lead to a high degree of disagreement among pathologists. Therefore, an automatic diagnostic system could assist pathologists to improve the effectiveness of diagnostic processes. This paper presents an ensemble deep learning approach for the definite classification of non-carcinoma and carcinoma breast cancer histopathology images using our collected dataset. We trained four different models based on pre-trained VGG16 and VGG19 architectures. Initially, we followed 5-fold cross-validation operations on all the individual models, namely, fully-trained VGG16, fine-tuned VGG16, fully-trained VGG19, and fine-tuned VGG19 models. Then, we followed an ensemble strategy by taking the average of predicted probabilities and found that the ensemble of fine-tuned VGG16 and fine-tuned VGG19 performed competitive classification performance, especially on the carcinoma class. The ensemble of fine-tuned VGG16 and VGG19 models offered sensitivity of 97.73% for carcinoma class and overall accuracy of 95.29%. Also, it offered an F1 score of 95.29%. These experimental results demonstrated that our proposed deep learning approach is effective for the automatic classification of complex-natured histopathology images of breast cancer, more specifically for carcinoma images

    A Comparative Study between Scanning Devices for 3D Printing of Personalized Ostomy Patches

    No full text
    This papers presents a comparative study of three different 3D scanning modalities to acquire 3D meshes of stoma barrier rings from ostomized patients. Computerized Tomography and Structured light scanning methods were the digitization technologies studied in this research. Among the Structured Light systems, the Go!Scan 20 and the Structure Sensor were chosen as the handheld 3D scanners. Nineteen ostomized patients took part in this study, starting from the 3D scans acquisition until the printed ostomy patches validation. 3D mesh processing, mesh generation and 3D mesh comparison was carried out using commercial softwares. The results of the presented study show that the Structure Sensor, which is the low cost structured light 3D sensor, has a great potential for such applications. This study also discusses the benefits and reliability of low-cost structured light systems

    Predicting Physical Exercise Adherence in Fitness Apps Using a Deep Learning Approach

    No full text
    The use of mobile fitness apps has been on the rise for the last decade and especially during the worldwide SARS-CoV-2 pandemic, which led to the closure of gyms and to reduced outdoor mobility. Fitness apps constitute a promising means for promoting more active lifestyles, although their attrition rates are remarkable and adherence to their training plans remains a challenge for developers. The aim of this project was to design an automatic classification of users into adherent and non-adherent, based on their training behavior in the first three months of app usage, for which purpose we proposed an ensemble of regression models to predict their behaviour (adherence) in the fourth month. The study was conducted using data from a total of 246 Mammoth Hunters Fitness app users. Firstly, pre-processing and clustering steps were taken in order to prepare the data and to categorize users into similar groups, taking into account the first 90 days of workout sessions. Then, an ensemble approach for regression models was used to predict user training behaviour during the fourth month, which were trained with users belonging to the same cluster. This was used to reach a conclusion regarding their adherence status, via an approach that combined affinity propagation (AP) clustering algorithm, followed by the long short-term memory (LSTM), rendering the best results (87% accuracy and 85% F1_score). This study illustrates the suggested the capacity of the system to anticipate future adherence or non-adherence, potentially opening the door to fitness app creators to pursue advanced measures aimed at reducing app attrition
    corecore